Stożek - Definicja i wzory - MatFiz24.pl

Stożek

Definicja stożka:

„Stożek to bryła przestrzenna powstała przez obrót trójkąta prostokątnego wokół jednej z przyprostokątnych.”

Wzory, objętość i pole powierzchni stożka

Wzór na objętość stożka: \[\begin{align} & V=\frac{1}{3}\cdot {{P}_{p}}\cdot H \\ & V=\frac{1}{3}\cdot \pi \cdot {{r}^{2}}\cdot H \\ \end{align}\] Wzór na pole podstawy stożka: \[{{P}_{p}}=\pi \cdot {{r}^{2}}\] Wzór na pole boczne stożka: \[{{P}_{b}}=\pi \cdot r\cdot l\] Wzór na pole boczne stożka można łatwo zapamiętać przez skrót: „PRLPolska Rzeczpospolita Ludowa”. P to inaczej \(\pi\), R to promień, L to tworząca.

Wzór na pole powierzchni całkowitej stożka: \[\begin{align} & {{P}_{c}}={{P}_{p}}+{{P}_{b}} \\ & {{P}_{c}}=\pi \cdot {{r}^{2}}+\pi \cdot r\cdot l \\ \end{align}\]

Siatka stożka

Warto zauważyć, że długość obwodu podstawy jest równa długości łuku będącego w polu bocznym. To są te zaznaczone na czerwono krzywe. Widzisz, że łączą się one podczas sklejania stożka.

Bądź na bieżąco z MatFiz24.pl