Układ oznaczony, nieoznaczony i sprzeczny - Zadania - MatFiz24.pl

Układ oznaczony, nieoznaczony i sprzeczny

Układ oznaczony, nieoznaczony, sprzeczny jest dość łatwy do rozpoznania na podstawie obliczeń.

Układ równań jest oznaczony, gdy podczas obliczeń otrzymasz jedno rozwiązanie np.: \(\left\{ \begin{matrix} x=3 \\ y=2 \\ \end{matrix} \right.\)

Układ równań jest nieoznaczony (tożsamościowy), gdy podczas obliczeń otrzymasz tożsamość np.: 0=0, 1=1, 3=3 itp. Z lewej strony i prawej strony równania otrzymujesz identyczne liczby najczęściej 0=0. Taki układ ma nieskończenie wiele rozwiązań.

Układ równań jest sprzeczny, gdy podczas obliczeń otrzymujesz sprzeczność – „fałsz matematyczny” np.: 0≠3, 4≠0, 5≠6 itp. Występuje tu brak rozwiązań.

Interpretacja graficzna układu równań

Interpretacją układu równań w układzie współrzędnych jest para prostych. Układ równań posiada dwa równania. Każde z nich można narysować w układzie współrzędnych jako prostą.

Interpretacja graficzna układu równań

W pierwszej kolumnie jest układ oznaczony.

Podczas obliczeń otrzymujemy parę liczb: \(\left\{ {\begin{array}{*{20}{c}} {x = 1}\\ {y = 2} \end{array}} \right.\). Liczby x=1 i y=2 są jednocześnie współrzędnymi punktu przecięcia dwóch prostych, których równania są określone przez układ równań. Zatem punkt przecięcia się prostych jest rozwiązaniem graficznym układu równań.


W drugiej kolumnie jest układ nieoznaczony.

Gdybyś wykonał rachunki wyjdzie nam tożsamość: 0=0. Pozornie równania w tym układzie wyglądają inaczej, ale tak na prawdę można doprowadzić oba równania do tej samej postaci. A skoro równania opisujące proste są identyczne zatem interpretacją układu nieoznaczonego są dwie proste leżące jedna na drugiej (będące tą samą prostą). W takim przypadku mamy nieskończenie wiele punktów wspólnych między tymi dwiema prostymi. Stąd układ nieoznaczony ma nieskończenie wiele rozwiązań.


W trzeciej kolumnie jest układ sprzeczny.

Podczas obliczeń otrzymałbyś sprzeczność 0≠-5. W układzie współrzędnych taki układ równań prezentuje się w postaci dwóch prostych równoległych, które nie mają wspólnych punktów. Stąd układ sprzeczny nie ma rozwiązań.

Zadanie.

Rozwiąż układy równań i odpowiedz, który z nich jest oznaczony, nieoznaczony lub sprzeczny.

Układ oznaczony nieoznaczony sprzeczny
Zobacz na stronie
Zobacz na YouTube

Równania w układach równań mogą być zapisane między innymi w:
1. Postaci ogólnej prostej Ax+By+C=0
2. Postaci kierunkowej y=ax+b


Układ oznaczony, nieoznaczony lub sprzeczny dla dwóch równań zapisanych w postaci ogólnej
Układ dwóch równań zapisanych w postaci ogólnej:
\[\left\{ \begin{matrix} {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}=0 \\ {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}=0 \\ \end{matrix} \right.\]

  • jest oznaczony, jeśli \(\frac{{{A_1}}}{{{A_2}}} \ne \frac{{{B_1}}}{{{B_2}}}\)
  • jest nieoznaczony, jeśli \(\frac{{{A_1}}}{{{A_2}}} = \frac{{{B_1}}}{{{B_2}}} = \frac{{{C_1}}}{{{C_2}}}.\) W praktyce jedno z równań można doprowadzić do postaci drugiego równania tak, że \({A_1} = {A_2};\;{B_1} = {B_2};\;{C_1} = {C_2}\)
  • jest sprzeczny, jeśli \(\frac{{{A_1}}}{{{A_2}}} = \frac{{{B_1}}}{{{B_2}}} \ne \frac{{{C_1}}}{{{C_2}}}.\)
  • W zadaniach matematycznych można jedno z równań sprowadzić do postaci drugiego tak, że będą się różnić się tylko liczbami, wyrazami wolnymi bez literek. Więc warunek można uprościć do \({A_1} = {A_2};\;{B_1} = {B_2};\;{C_1} \ne {C_2}\)

Układ oznaczony, nieoznaczony lub sprzeczny dla dwóch równań zapisanych w postaci kierunkowej prostej:
Układ dwóch równań zapisanych w postaci kierunkowej:
\[\left\{ {\begin{array}{*{20}{l}} {y = {a_1}x + {b_1}}\\ {y = {a_2}x + {b_2}} \end{array}} \right.\]

  • jest oznaczony, jeśli \({a_1} \ne {a_2}\), współczynniki \({b_1},{b_2}\) są dowolne.
  • jest nieoznaczony, jeśli \({a_1} = {a_2};\;{b_1} = {b_2}.\) W tego typu układach dwa równania są identyczne. Jeśli nie wyglądają tak samo to można przekształcić jedno z nich do postaci drugiego równania, aby otrzymać w końcu identyczne równania.
  • jest sprzeczny, jeśli \({a_1} = {a_2};\;{b_1} \ne {b_2}\). Układy sprzeczne posiadające równania w postaci kierunkowej różnią się tylko współczynnikiem „b”, a pozostała część równań jest identyczna.

Porównanie układu oznaczonego, nieoznaczonego i sprzecznego

Zadanie.

Poniższe zdania odnoszą się do następującego układu \(\left\{ \begin{matrix} 6x-15y=15 \\ 2x-5y=5 \\ \end{matrix} \right.\). Wskaż zdanie prawdziwe.

A. Rozwiązaniem układu równań jest dokładnie jedna para liczb.
B. Zamieszczony układ równań ma nieskończenie wiele rozwiązań.
C. Każda para liczb rzeczywistych jest rozwiązaniem układu.
D. Zamieszczony obok układ równań nie ma rozwiązań.
Zobacz na stronie
Zobacz na YouTube
Zadanie.

Odpowiedz, czy dany układ jest oznaczony, nieoznaczony (tożsamościowy) lub sprzeczny.

\[\left\{ {\begin{array}{*{20}{c}} {8x – 6y = 5\quad }\\ { – 4x + 3y = – 2,5} \end{array}} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {4x – \frac{1}{2}y = 3}\\ {8x – y = 8\,\;} \end{array}} \right.\]
Zobacz na stronie
Zobacz na YouTube

Układ sprzeczny – brak rozwiązań

Zadanie.

Rozwiąż układ równań. Określ, czy jest to układ oznaczony, nieoznaczony, czy sprzeczny.

\[\left\{ {\begin{array}{*{20}{c}} {2x – 3y = 5}\\ {2x – 3y = 6} \end{array}} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {2x – 3y = 5}\\ {4x – 6y = 20} \end{array}} \right.\]
Treść dostępna po opłaceniu abonamentu
  • Ucz się matematyki już od 25 zł. Instrukcja premium
  • Uzyskaj dostęp do całej strony MatFiz24.pl
  • Wesprzyj rozwój filmów matematycznych
Zaloguj się lub Wykup
Sprawdź Wykup
Anuluj
Pełny dostęp do zawartości MatFiz24.pl na 15 dni za 25.00 zł.
Pełny dostęp do zawartości MatFiz24.pl na 90 dni za 65.00 zł.
Pełny dostęp do zawartości MatFiz24.pl na 180 dni za 87.00 zł.

Kup abonament na 15 dni

25.00 PLN Przelew Dotpay

Podaj swój email, aby zakupić dostęp do wszystkich treści

/
Odblokuj na 15 dni

Dokonując zamówienia potwierdzasz zapoznanie się z regulaminem serwisu MatFiz24.pl.

Kup abonament na 90 dni

65.00 PLN Przelew Dotpay

Podaj swój email, aby zakupić dostęp do wszystkich treści

/
Odblokuj na 90 dni

Dokonując zamówienia potwierdzasz zapoznanie się z regulaminem serwisu MatFiz24.pl.

Kup abonament na 180 dni

87 PLN Przelew Dotpay

Podaj swój email, aby zakupić dostęp do wszystkich treści

/
Odblokuj na 180 dni

Dokonując zamówienia potwierdzasz zapoznanie się z regulaminem serwisu MatFiz24.pl.

Anuluj

Układ nieoznaczony – wiele rozwiązań

Zadanie.

Rozwiąż układ równań. Określ, czy jest to układ oznaczony, nieoznaczony, czy sprzeczny.

\[\left\{ {\begin{array}{*{20}{c}} {5x + 4y = 2}\\ {5x + 4y = 2} \end{array}} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {5x + 4y = 2}\\ {15x + 12y = 6} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu.
Zadanie.

Podaj jakie liczby należy wstawić za literkę „a” i „b”, aby układy były oznaczone, nieoznaczone i sprzeczne.

\[\left\{ {\begin{array}{*{20}{c}} {3x – 4y = 5}\\ {ax – 4y = b} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu.
Zadanie.

Nie wykonując obliczeń określ, który układ jest oznaczony, nieoznaczony lub sprzeczny.

\[\left\{ {\begin{array}{*{20}{c}} {0,5x + 0,3y = 3}\\ {x + 0,6y = 4,3} \end{array}} \right.\] \[\left\{ \begin{matrix} x+3y=10 \\ 2x+6y=20 \\ \end{matrix} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {2x + 2y = 4}\\ {x – 2y = 5} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu.
Bądź na bieżąco z MatFiz24.pl