Konkurs kuratoryjny z matematyki 2004/2005 – Śląskie – Etap rejonowy
Konkurs kuratoryjny z matematyki, etap rejonowy – 7 stycznia 2005 r.
Przeczytaj uważnie poniższą instrukcję:
- Test składa się z 15 zadań. Przy numerze każdego zadania została podana maksymalna liczba punktów możliwych do zdobycia za to zadanie. Do finału zostaną zakwalifikowani uczniowie, którzy uzyskają co najmniej 23 punkty.
- Przeczytaj uważnie treść zadań, zwracając uwagę na to, czy polecenie każe podać jedynie wynik, czy też obliczyć szukaną wielkość (tzn. zapisać obliczenie lub w inny sposób uzasadnić odpowiedź).
- Odpowiedzi do zadań z części I zaznacz w tabeli. Rozwiązania zadań z części II wpisz na oddzielne kartki.
- Na rozwiązanie wszystkich zadań masz 90 minut.
Pliki z zadaniami konkursowymi do pobrania
Zadania z konkursu kuratoryjnego możesz pobrać tutaj.
Zadania i rozwiązania z konkursu kuratoryjnego
Ostatnią cyfrą liczby 3150 jest:
Poniższe zdania odnoszą się do następującego układu \(\left\{ \begin{matrix} 6x-15y=15 \\ 2x-5y=5 \\ \end{matrix} \right.\). Wskaż zdanie prawdziwe.
Liczbą przeciwną do wartości wyrażenia \(\left( x-1 \right)\left( x+1 \right)-{{\left( x-1 \right)}^{2}}-{{\left( x+1 \right)}^{2}}+{{x}^{3}}\) dla x=–1 jest:
Weronika i Ela kreśliły koła o tym samym promieniu, umieszczając je w układzie współrzędnych. Środek koła Weroniki ma współrzędne (– 4, 5). Jakie współrzędne ma środek koła wykreślonego przez Elę, jeśli jest ono symetryczne do koła Weroniki względem osi odciętych (OX)?
Suma liczb \(\sqrt{72}:\sqrt{2}\) oraz \(\sqrt{2}\cdot \sqrt{\frac{1}{2}}\) wynosi:
Funkcja y=(m+1)x+3 jest rosnąca dla:
Kasia obliczyła, że średnia jej ocen na koniec roku z 10 przedmiotów będzie wynosiła 3,5. Gdyby Kasia poprawiła ocenę z matematyki z 3 na 4, to średnia jej ocen wyniosłaby:
Gra polega na rzucie symetryczną sześcienną kostką do gry. Gracz wygrywa, gdy otrzyma sumę oczek nie większą od 4. Ile wynosi szansa wygranej?
- Ucz się matematyki już od 25 zł. Instrukcja premium
- Uzyskaj dostęp do całej strony MatFiz24.pl
- Wesprzyj rozwój filmów matematycznych
Wskaż nierówność, która opisuje zbiór liczb rzeczywistych x zaznaczonych na poniższej osi liczbowej:
Słoń biega o 20% wolniej od hipopotama. Hipopotam biega o 10 km/h szybciej od słonia. Jak szybko biega słoń?
Oblicz pole figury ograniczonej wykresem funkcji y=-2x-8 oraz osiami układu współrzędnych jest równe. Wykonaj rysunek.
Treść dostępna po opłaceniu abonamentu.W kwadrat o boku a i w trójkąt równoboczny o boku 2a wpisano koła. Wskaż koło o większym polu. Odpowiedź uzasadnij.
Treść dostępna po opłaceniu abonamentu.Michał chodzi do szkoły zawsze z tą samą prędkością 4 km/h. Pewnego dnia wyszedł 15 minut później niż zwykle. Aby nie spóźnić się do szkoły musiał biec z prędkością 8 km/h. Do szkoły dotarł na tę samą godzinę co zawsze. Oblicz, jak daleko Michał ma do szkoły.
Treść dostępna po opłaceniu abonamentu.Ogrodnik urządził rabatę kwiatową w kształcie trójkąta prostokątnego o powierzchni 6 arów, w którym jedna z przyprostokątnych ma długość 30 m. Zamiast ogrodzenia postanowił posadzić wzdłuż brzegów rabaty żywopłot. Oblicz, ile sadzonek żywopłotu musi kupić ogrodnik, jeżeli pomiędzy sadzonkami należy zachować odległość 50 cm.
Treść dostępna po opłaceniu abonamentu.W kwadracie ABCD o boku 8 cm punkt K jest środkiem boku AD. Proste AC i BK przecinają się w punkcie M. Wykonaj rysunek i oblicz długości odcinków: BK, KM.
Treść dostępna po opłaceniu abonamentu.