Równania
Właściciel sklepu sportowego kupił w hurtowni deskorolki i kaski. Cena hurtowa deskorolki była o 60 zł wyższa niż cena hurtowa kasku. Właściciel sklepu ustalił cenę sprzedaży deskorolki o 20% wyższą od ceny hurtowej, a cenę sprzedaży kasku – o 40% wyższą od ceny hurtowej. Deskorolka i kask łącznie kosztowały w sklepie 397 zł. Oblicz łączny koszt zakupu po cenach hurtowych jednej deskorolki i jednego kasku. Zapisz obliczenia.
Grupa turystów w ciągu pierwszej godziny marszu pokonała pewien odcinek trasy. W każdej następnej godzinie pokonywany dystans był o 0,5 km krótszy od dystansu pokonanego w poprzedniej godzinie. W ciągu pierwszych pięciu godzin marszu turyści przeszli łącznie
17,5 km trasy.
Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Odcinek trasy, który turyści przeszli w pierwszej godzinie marszu, miał długość
W pewnym zakładzie każdy z pracowników codziennie maluje taką samą liczbę jednakowych ozdób. Pracownicy potrzebowali 12 dni roboczych, aby wykonać zamówienie. Gdyby było ich o dwóch więcej, to czas wykonania tego zamówienia byłby o 3 dni krótszy.
Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Liczbę pracowników x tego zakładu można obliczyć, rozwiązując równanie
Na rysunku przedstawiono prostokąt, którego wymiary są opisane za pomocą wyrażeń.
W zawodach sportowych każdy zawodnik miał pokonać trasę składającą się z trzech części. Pierwszą część trasy zawodnik przejechał na rowerze, drugą część − prowadzącą przez jezioro − przepłynął, a trzecią – przebiegł. Na rysunku przedstawiono schemat tej trasy.
Na podstawie informacji wybierz zdanie prawdziwe.
A. Cała trasa miała długość 50 km.
B. Zawodnik przebiegł 8 km.
C. Odległość, którą zawodnik przebiegł, była o 4 km większa od odległości, którą przepłynął.
D. Odległość, którą zawodnik przejechał na rowerze, była 5 razy większa od odległości, którą przebiegł.
W pewnej klasie liczba chłopców stanowi 80% liczby dziewcząt. Gdyby do tej klasy doszło jeszcze trzech chłopców, to liczba chłopców byłaby równa liczbie dziewcząt. Ile dziewcząt jest w tej klasie? Zapisz obliczenia.
Jeden z kątów wewnętrznych trójkąta ma miarę α, drugi ma miarę o 30° większą niż kąt α, a trzeci ma miarę trzy razy większą niż kąt α.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Trójkąt ten jest
A. równoboczny.
B. równoramienny.
C. rozwartokątny.
D. prostokątny.
- Ucz się matematyki już od 25 zł. Instrukcja premium
- Uzyskaj dostęp do całej strony MatFiz24.pl
- Wesprzyj rozwój filmów matematycznych
Obwód trapezu równoramiennego jest równy 72 cm, ramię ma długość 20 cm, a różnica długości podstaw wynosi 24 cm. Oblicz pole tego trapezu. Zapisz obliczenia.
Treść dostępna po opłaceniu abonamentu.Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Połowa uczestników wycieczki urodziła się w Polsce, co trzeci urodził się w Niemczech, a pięciu pozostałych we Francji. W wycieczce brało udział
A. 26 osób. B. 30 osób. C. 46 osób. D. 60 osób.
Hania, płacąc w sklepie za trzy tabliczki czekolady, podała kasjerce 15 zł i otrzymała 0,60 zł reszty. Które z równań odpowiada treści zadania, jeśli cenę tabliczki czekolady oznaczymy przez x?
A. 3x + 0,6 = 15 B. 3x + 15 = 0,6 C. 0,6x + 3= 15 D. 15x + 0,6 = 3
Treść dostępna po opłaceniu abonamentu.Trzy lata temu posadzono przed domem krzew. Co roku podwajał on swoją wysokość i teraz ma 144 cm. Jeśli przez x oznaczymy wysokość krzewu w dniu posadzenia, to informacjom z zadania odpowiada równanie
A. x = 144 B. 4x = 144 C. 6x = 144 D. 8x = 144
Na rzece zbudowano most, który zachodzi na jej brzegi: 150 metrów mostu zachodzi na jeden brzeg, a 1/3 długości mostu na drugi. Oblicz szerokość rzeki, jeżeli stanowi ona 1/6 długości mostu. Zapisz obliczenia.
Treść dostępna po opłaceniu abonamentu.Podczas trzydniowej pieszej wycieczki uczniowie przeszli 39 km. Drugiego dnia pokonali dwa razy dłuższą trasę niż pierwszego dnia, a trzeciego o 5 km mniej niż pierwszego. Ile km przebyli pierwszego dnia?
A. 6 B. 11 C. 22 D. 28
Treść dostępna po opłaceniu abonamentu.W wycieczce rowerowej uczestniczy 32 uczniów. Chłopców jest o 8 więcej, niż dziewcząt. Ilu chłopców jest w tej grupie?
A. 12 B. 16 C. 20 D. 24
Jacek i Paweł zbierają znaczki. Jacek ma o 30 znaczków więcej niż Paweł. Razem mają 350 znaczków. Ile znaczków ma Paweł?
A. 145 B. 160 C. 190 D. 205
Treść dostępna po opłaceniu abonamentu.Paweł kupił australijski znaczek i 3 znaczki krajowe. Każdy znaczek krajowy kosztował tyle samo. Za wszystkie znaczki zapłacił 16 zł. Ile kosztował znaczek australijski, jeżeli był pięciokrotnie droższy niż znaczek krajowy?
A. 4 zł B. 10 zł C. 12 zł D. 13 zł
Treść dostępna po opłaceniu abonamentu.Do pracowni komputerowej zakupiono 8 nowych monitorów i 6 drukarek za łączną kwotę 9400 zł. Drukarka była o 300 zł tańsza niż monitor. Cenę monitora można obliczyć, rozwiązując równanie:
A. 8x + 6(x + 300) = 9400
B. 8x + 6(x – 300) = 9400
C. 8(x-300) + 6x = 9400
D. 8(x + 300) + 6(x-300) = 9400
Marcin przebywa autobusem 3/4 drogi do jeziora, a pozostałą część piechotą. Oblicz odległość między domem Marcina, a jeziorem, jeżeli trasa, którą przebywa pieszo, jest o 8 km krótsza niż trasa, którą przebywa autobusem. Zapisz obliczenia.
Treść dostępna po opłaceniu abonamentu.